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Abstract

Let Gn denote either the group SO(2n + 1, F ), Sp(2n, F ), or
GSpin(2n + 1, F ) over a non-archimedean local field of characteristic
different than two. We determine all composition factors of degenerate
principal series of Gn, using methods based on the Aubert involution
and known results on irreducible subquotiens of the generalized prin-
cipal series of particular type.

1 Introduction

Let F be a non-archimedean local field of characteristic different than two.
Let Gn denote a symplectic, odd special orthogonal, or odd general spin
group of split rank n defined over F , and Gn = Gn(F ). The aim of this pa-
per is to obtain a uniform description of reducibility and composition factors
of degenerate principle series of Gn. This greatly generalizes and simplifies
previous works of Jantzen [8], Kudla-Rallis [16], Gustafson [7], and others.
We note that the degenerate principle series, besides being interesting by
themselves, play an important role in the theory of automorphic forms, es-
pecially the extension of the Siegel-Weil formula, constructions of residual
spectrum [12, 13], and in the local theta-correspondence.
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Let σ denote an irreducible unitary cuspidal representation of some Gn.
Also, let ρ0 denote an irreducible unitary self-contragredient (resp., essen-
tially self-contragredient, i.e., ρ̃ ∼= ρ⊗ωσ) cuspidal representation ofGL(nρ0 , F ),
and let ρ denote an irreducible unitary self-contragredient (resp., essentially
self-contragredient) cuspidal representation of GL(nρ, F ) when Gn is a clas-
sical group (resp., Gn = GSpin(2n + 1, F )). Then there exist unique non-
negative half-integers α, β such that ναρ o σ, νβρ0 o σ are reducible (for
more details regarding the notation we refer the reader to Section 2). For
x ≥ α > 0 such that x−α ∈ Z, the induced representation ν−xρ× ν−x+1ρ×
· · ·× ν−αρoσ contains a unique irreducible subrepresentation, which we de-
note by ζ(ρ, x;σ). A degenerate principal series is an induced representation
of the form

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ), (1)

for a, b such that b − a ∈ Z, where ζ([ν−bρ0, ν
−aρ0]) is a Zelevinsky seg-

ment representation, i.e., the unique irreducible subrepresentation of ν−bρ0×
ν−b+1ρ0×· · ·×ν−aρ0. It has been explained in detail in [8, Section 2] that this
definition generalizes the classical notion of the degenerate principal series,
studied in [7] and [16]. We note that the composition series of the degenerate
principal series (1) have been determined in [8] for α ∈ {0, 1

2
, 1}, using Tadić’s

Jacquet modules method [27, 28], and here we treat the general case. Since
the case α = 0 is also handled in [5], and the results extend to the GSpin
case in the same way, we consider the case α > 0. Our results show that the
degenerate principal series are multiplicity one representations of length up
to four, and also provide a deeper insight into the structure of the irreducible
subquotients.

Our approach to the determination of reducibility and composition factors
of induced representations of the form (1) is completely different than one
used in [8], and is based on the methods of the Aubert involution. The Aubert
dual of the degenerate principal series is a special type of the generalized
principal series, and the composition factors of such representations have
been determined in [26] and [19, Proposition 3.2]. To determine the Aubert
duals of composition factors in question, we use a further adjustment of
the methods initiated in [20, 21, 22]. Eventually, it turns out that needed
Aubert duals of tempered representations mostly follow directly from [20, 22].
On the other hand, to determine the Aubert duals of the involved non-
tempered representations we use an inductive approach based on the detailed
investigation of embeddings and Jacquet modules of such representations,
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using a case-by-case consideration. Let us also note that an algorithm for
explicit determination of the Aubert duals for classical groups in the half-
integral case has been recently provided in [11].

Let us now describe the contents of the paper in more detail. In the
following section we present some preliminaries, while the first special case
β = 0 is treated in the third section. The case β > 0 is studied in Sections 4
– 6, where in the fourth section we handle the case a ≥ 1, in the fifth section
the case a ≤ 0, and in the sixth section we deal with the case a = 1

2
. To

work effectively, from Lemma 2.5 to the end of Section 6, we mainly focus on
the cases Gn = Sp(2n, F ) and SO(2n+ 1, F ) (see Remark 2.4). In the final
section we provide necessary adjustments in the odd GSpin case.
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2 Preliminaries

Throughout the paper, F will denote a non-archimedean local field of char-
acteristic different than two.

For a connected reductive p-adic groupG defined over field F , let Σ denote
the set of roots of G with respect to fixed minimal parabolic subgroup and
let ∆ stand for the corresponding subset of simple roots. For θ ⊆ ∆, we let
Pθ denote the standard parabolic subgroup of G corresponding to θ and let
Mθ denote a corresponding standard Levi subgroup. Let W denote the Weyl
group of G.

For a parabolic subgroup P of G with the Levi subgroup M , and a rep-
resentation σ of M , we denote by iM(σ) a normalized parabolically induced
representation of G induced from σ. Also, let rM(σ) stand for the normalized
Jacquet module of an admissible finite length representation σ of G, with re-
spect to the standard parabolic subgroup having the Levi subgroup equal to
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M .
We take a moment to recall the definition of the Aubert involution and

some of its basic properties [3, 4].

Theorem 2.1. Define the operator on the Grothendieck group of admissible
representations of finite length of G by

DG =
∑
θ⊆∆

(−1)|θ|iMθ
◦ rMθ

.

Operator DG has the following properties:

(i) DG is an involution.

(ii) DG takes irreducible representations to irreducible ones, up to ±.

(iii) If σ is an irreducible cuspidal representation, then DG(σ) = (−1)|∆|σ.

(iv) For a standard Levi subgroup M = Mθ, we have

rM ◦DG = Ad(w) ◦Dw−1(M) ◦ rw−1(M),

where w is the longest element of the set {w ∈ W : w−1(θ) > 0}.

(v) For a standard Levi subgroup M = Mθ, we have DG ◦ iM = iM ◦DM .

We look at the usual towers of symplectic or orthogonal groups Gn =
G(Vn), that are groups of isometries of F -spaces (Vn, ( , )), n ≥ 0, where
the form ( , ) is non-degenerate and it is skew-symmetric if the tower is
symplectic and symmetric otherwise. In the final section, we also consider
the odd general spin groups Gn = GSpin(2n + 1, F ) (See Section 7 for the
definition). The set of standard parabolic subgroups of the group Gn will be
fixed in the usual way.

Then the Levi subgroups of standard parabolic subgroups have the form
M ∼= GL(n1, F ) × · · · × GL(nk, F ) × Gm, where GL(ni, F ) denotes a gen-
eral linear group of rank ni over F . For simplicity of exposition, if δi, i =
1, 2, . . . , k denotes a representation of GL(ni, F ), and if τ stands for a repre-
sentation ofGm, we let δ1×δ2×· · ·×δkoτ stand for the induced representation
iM(δ1⊗ δ2⊗ · · · ⊗ δk⊗ τ) of Gn, where M is the standard Levi subgroup iso-
morphic to GL(n1, F )×· · ·×GL(nk, F )×Gm. Here n = n1+n2+· · ·+nk+m.
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Similarly, by δ1 × δ2 × · · · × δk we denote the induced representation
iM ′(δ1 ⊗ δ2 ⊗ · · · ⊗ δk) of the group GL(n′, F ), where the Levi subgroup M ′

equals GL(n1, F )×GL(n2, F )×· · ·×GL(nk, F ) and n′ = n1 +n2 + · · ·+nk.
Let Irr(GL(n, F )) denote the set of all irreducible admissible represen-

tations of GL(n, F ), and let Irr(Gn) denote the set of all irreducible admis-
sible representations of Gn. Let R(GL(n, F )) stand for the Grothendieck
group of admissible representations of finite length of GL(n, F ) and define
R(GL) = ⊕n≥0R(GL(n, F )). Similarly, let R(Gn) stand for the Grothendieck
group of admissible representations of finite length of Gn and define R(G) =
⊕n≥0R(Gn).

If σ is an irreducible representation of Gn, we denote by σ̂ the represen-
tation ±DGn(σ), taking the sign + or − such that σ̂ is a positive element in
R(Gn). We call σ̂ the Aubert dual of σ.

Using Jacquet modules for the maximal standard parabolic subgroups of
GL(n, F ), one can define m∗(π) =

∑n
k=0(r(k)(π)) ∈ R(GL) ⊗ R(GL), for

an irreducible representation π of GL(n, F ), and then extend m∗ linearly
to R(GL). Here r(k)(π) denotes the normalized Jacquet module of π with
respect to the standard parabolic subgroup having the Levi subgroup equal
to GL(k, F )×GL(n−k, F ), and we identify r(k)(π) with its semisimplification
in R(GL(k, F ))⊗R(GL(n− k, F )).

Let ν denote the composition of the determinant mapping with the nor-
malized absolute value on F . Let ρ ∈ Irr(GL(k, F )) denote a cuspidal rep-
resentation. By a segment of cuspidal representations we mean a set of the
form {ρ, νρ, . . . , νmρ}, which we denote by [ρ, νmρ].

By the results of [30], each irreducible essentially square-integrable rep-
resentation δ ∈ Irr(GL(n, F )) is attached to a segment, and we set δ =
δ([νaρ, νbρ]), which is the unique irreducible subrepresentation of νbρ×νb−1ρ×
· · · × νaρ, where a, b ∈ R are such that b− a is a non-negative integer and ρ
is an irreducible unitary cuspidal representation of some GL(k, F ). The in-
duced representation νbρ×νb−1ρ×· · ·×νaρ also contains a unique irreducible
quotient, which we denote by ζ([νaρ, νbρ]). Furthermore, ζ([νaρ, νbρ]) is the
unique irreducible subrepresentation of νaρ×νa+1ρ×· · ·×νbρ, and in R(GL)
we have

νaρ× νa+1ρ = δ([νaρ, νa+1ρ]) + ζ([νaρ, νa+1ρ])

and

νaρ× νa+1ρ× νa+1ρ = δ([νaρ, νa+1ρ])× νa+1ρ+ ζ([νaρ, νa+1ρ])× νa+1ρ,
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both representations δ([νaρ, νa+1ρ])×νa+1ρ and ζ([νaρ, νa+1ρ])×νa+1ρ being
irreducible.

Let us briefly recall the Langlands classification for classical groups. We
favor the subrepresentation version of this classification over the quotient one
since it is more appropriate for our Jacquet module considerations.

For every irreducible essentially square-integrable representation δ ∈ R(GL),
there is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Note that
e(δ([νaρ, νbρ])) = (a + b)/2. Every non-tempered irreducible representation
π of Gn can be written as the unique irreducible (Langlands) subrepresenta-
tion of an induced representation of the form δ1 × δ2 × · · · × δk o τ , where τ
is a unitary tempered representation of some Gt, and δ1, δ2, . . . , δk ∈ R(GL)
are irreducible essentially square-integrable representations such that e(δ1) ≤
e(δ2) ≤ · · · ≤ e(δk) < 0. In this case, we write π = L(δ1, δ2, . . . , δk; τ). For
a given π, the representations δ1, δ2, . . . , δk are unique up to a permutation
among those δi having the same exponents.

Let τ ∈ R(G) denote an irreducible tempered representation. If δ1, δ2,
. . . , δk ∈ R(GL) are irreducible essentially square-integrable representations
such that e(δi) < 0 for i = 1, 2, . . . , k, and δi × δj ∼= δj × δi for i < j such
that e(δi) > e(δj), then the induced representation δ1 × δ2 × · · · × δk o τ
contains a unique irreducible subrepresentation, which will also be denoted
by L(δ1, δ2, . . . , δk; τ), for simplicity of the notation.

For a representation σ ∈ R(Gn) and 1 ≤ k ≤ n, we denote by r(k)(σ)
the normalized Jacquet module of σ with respect to the parabolic subgroup
P(k) having the Levi subgroup equal to GL(k, F )×Gn−k. We identify r(k)(σ)
with its semisimplification in R(GL(k, F ))⊗R(Gn−k) and consider

µ∗(σ) = 1⊗ σ +
n∑
k=1

r(k)(σ) ∈ R(GL)⊗R(G).

We pause to state a result, derived in [27] ([14] for odd GSpin groups),
which presents a crucial structural formula for our calculations of Jacquet
modules of classical groups.

Lemma 2.2. Let ρ ∈ Irr(GL(n, F )) denote a cuspidal representation and
let k, l ∈ R such that k + l is a non-negative integer. Let σ ∈ R(G) denote
an admissible representation of finite length, and write µ∗(σ) =

∑
τ,σ′ τ ⊗ σ′.

If σ is a representation of the odd GSpin group, let ωσ denote the central
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character of σ, otherwise let ωσ be trivial. Then the following holds:

µ∗(δ([ν−kρ, νlρ]) o σ) =
l∑

i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ̃⊗ (ωσ ◦ det), νkρ̃⊗ (ωσ ◦ det)])

× δ([νj+1ρ, νlρ])× τ ⊗ δ([νi+1ρ, νjρ]) o σ′.

We omit δ([νxρ, νyρ]) if x > y.

An irreducible representation σ ∈ R(G) is called strongly positive if for
every embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp,

where ρi ∈ R(GL(nρi , F )), i = 1, 2, . . . , k, are unitary cuspidal representa-
tions and σcusp ∈ R(G) is an irreducible unitary cuspidal representation, we
have si > 0 for each i.

Let us briefly recall an inductive description of non-cuspidal strongly pos-
itive discrete series, which has been obtained in [14, 17, 25].

Proposition 2.3. Suppose that σsp ∈ R(G) is an irreducible strongly positive
representation and let ρ ∈ R(GL) denote an irreducible unitary cuspidal
representation such that some twist of ρ appears in the cuspidal support of
σsp. We denote by σcusp the partial cuspidal support of σsp. Then there
exist unique a, b ∈ R such that a > 0, b > 0, b − a ∈ Z≥0, and a unique
irreducible strongly positive representation σ′sp without νaρ in the cuspidal
support, with the property that σsp is the unique irreducible subrepresentation
of δ([νaρ, νbρ]) o σ′sp. Furthermore, there is a non-negative integer l such
that a + l = s, for s > 0 such that νsρ o σcusp reduces. If l = 0, there are
no twists of ρ appearing in the cuspidal support of σ′sp and if l > 0 there
exist unique b′ > b and a unique strongly positive discrete series σ′′sp, which
contains neither νaρ nor νa+1ρ in its cuspidal support, such that σ′sp can be

written as the unique irreducible subrepresentation of δ([νa+1ρ, νb
′
ρ]) o σ′′sp.

Through the paper, we fix an irreducible unitary cuspidal representation
σ ∈ R(G). Also, we fix an irreducible unitary cuspidal representation ρ0 ∈
R(GL) and an irreducible (essentially) self-contragredient unitary cuspidal
representation ρ ∈ R(GL), such that ναρoσ reduces for some α > 0. We note
that 2α ∈ Z, due to results of [1], [24, Théorème 3.1.1] and [6, Theorem 7.8],
and that νsρo σ is irreducible for s 6∈ {α,−α}.
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Let x stand for a half-integer such that x ≥ α and x− α ∈ Z. Then the
induced representation

ν−xρ× ν−x+1ρ× · · · × ν−αρo σ

has a unique irreducible subrepresentation, which we denote by ζ(ρ, x;σ).
Using [20, Theorem 3.5], we deduce that the Aubert dual of ζ(ρ, x;σ) is the
unique irreducible subrepresentation of νxρ×νx−1ρ×· · ·×ναρoσ. We note
that this representation is strongly positive, and will be denoted by δ(ρ, x;σ).

Let a, b denote real numbers such that b − a ∈ Z. We are interested in
determining the composition factors of the degenerate principal series

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ).

Since in R(G) we have

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ) = ζ([νaρ̃0, ν

bρ̃0]) o ζ(ρ, x;σ),

if Gn = Sp(2n, F ), SO(2n+ 1, F ),

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ) = ζ([νaρ̃0 ⊗ ωσ, νbρ̃0 ⊗ ωσ]) o ζ(ρ, x;σ),

if Gn = GSpin(2n+ 1, F ),

we can assume that −a ≤ b.
By properties of the Aubert involution, the Aubert dual of the degenerate

principal series ζ([ν−bρ0, ν
−aρ0])oζ(ρ, x;σ) is the generalized principal series

δ([νaρ̃0, ν
bρ̃0]) o δ(ρ, x;σ), if Gn = Sp(2n, F ), SO(2n+ 1, F ),

δ([νaρ̃0 ⊗ ωσ, νbρ̃0 ⊗ ωσ]) o δ(ρ, x;σ), if Gn = GSpin(2n+ 1, F ),
(2)

whose composition factors are completely described in [26] (this has been
already noted in [9, Corollary 4.3]). We note that the results of [26] extend to
the GSpin case by the last section of the paper. It follows from [26, Section 2]
(or [14, Proposition 2.5] for GSpin groups) that the induced representation
(2) is irreducible unless ρ0 is (essentially) self-contragredient. Thus, in what
follows we can assume that ρ0 is (essentially) self-contragredient, and let us
denote by β the unique non-negative real number such that νβρ0oσ reduces.
Again, it follows from [26, Section 2] that the induced representation (2) is
irreducible if a− β 6∈ Z (the argument is similar for GSpin). So, we can also
assume that a− β ∈ Z.
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Remark 2.4. (1) To work effectively, from now on until Section 6, Gn

will only denote Sp(2n, F ) and SO(2n + 1, F ). In Section 7, we will
consider the case of Gn = GSpin(2n+ 1, F ).

(2) All the lemmas and propositions in the rest of this section are also valid
for the odd GSpin case (with same statements, after replacing “self-
contragredient” by “essentially self-contragredient”, and adding unitar-
ity condition for the cuspidal representation σ), see Section 7 for more
detailed comments.

We will use the following result [10, Lemma 5.5] several times.

Lemma 2.5. Suppose that π ∈ R(Gn) is an irreducible representation, λ an
irreducible representation of the Levi subgroup M of Gn, and π is a subrep-
resentation of IndGnM (λ). If L > M , then there is an irreducible subquotient
ρ of IndLM(λ) such that π is a subrepresentation of IndGnL (ρ).

The following result is a direct consequence of [20, Lemma 2.2].

Lemma 2.6. Suppose that the Jacquet module of π with respect to the ap-
propriate parabolic subgroup contains an irreducible cuspidal representation
of the form νa1ρ1 ⊗ νa2ρ2 ⊗ · · · ⊗ νakρk ⊗ σ, where ρ1, . . . , ρk ∈ R(GL)
are self-contragredient representations. Then π̂ is a subrepresentation of
ν−a1ρ1 × ν−a2ρ2 × · · · × ν−akρk o σ.

We will now present a sequence of lemmas which enable us to use an
inductive procedure when determining the Aubert duals.

For a nonnegative integer m, real number t, and an irreducible cuspidal
representation ρ1 ∈ R(GL), we denote by (νtρ1)m the induced representa-
tion νtρ1 × · · · × νtρ1, where νtρ1 appears m times. Note that the induced
representation ζ([νcρ1, ν

dρ1])× (νtρ1)m is irreducible for t ∈ {c, c+ 1, . . . , d}
[30].

Lemma 2.7. Let c and d denote positive real numbers such that d − c
is a nonnegative integer. Let ρ1 ∈ R(GL) denote an irreducible cuspi-
dal self-contragredient representation. Suppose that π is a subrepresenta-
tion of an induced representation of the form ζ([νcρ1, ν

dρ1])× (νtρ1)m o π1,
where t ∈ {c, c + 1, . . . , d}, π1 is irreducible and µ∗(π1) does not contain
an irreducible constituent of the form νiρ1 ⊗ π2 for i ∈ {c, c + 1, . . . , d},
with π2 ∈ R(G). Then π̂ is the unique irreducible subrepresentation of
δ([ν−dρ1, ν

−cρ1])× (ν−tρ1)m o π̂1.
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Proof. We prove the lemma only in the case m = 0. The case m > 0 can
be handled in the same way. From properties of the Aubert involution we
conclude that π̂ is contained in δ([ν−dρ1, ν

−cρ1]) o π̂1.
From embeddings

π ↪→ ζ([νcρ1, ν
dρ1]) o π1 ↪→ νcρ1 × · · · × νdρ1 o π1

and Frobenius reciprocity, it follows that the Jacquet module of π with re-
spect to the appropriate parabolic subgroup contains νcρ1 ⊗ · · · ⊗ νdρ1 ⊗ π1.

Using transitivity of Jacquet modules and Lemma 2.6, we obtain that
the Jacquet module of π̂ with respect to the appropriate parabolic subgroup
contains an irreducible constituent of the form ν−cρ1 ⊗ · · · ⊗ ν−dρ1 ⊗ π′.

Since µ∗(π1) does not contain an irreducible constituent of the form νiρ1⊗
π2 for i ∈ {c, c + 1, . . . , d}, it follows from Lemma 2.6 that µ∗(π̂1) does not
contain an irreducible constituent of the form ν−iρ1 ⊗ π2 for i ∈ {c, c +
1, . . . , d}, with π2 ∈ R(G). Now it follows directly from the structural formula
that ν−cρ1⊗· · ·⊗ν−dρ1⊗ π̂1 is the unique irreducible constituent of the form
ν−cρ1⊗· · ·⊗ν−dρ1⊗π′ appearing in the Jacquet module of δ([ν−dρ1, ν

−cρ1])o
π̂1 with respect to the appropriate parabolic subgroup, and it appears there
with multiplicity one. It follows that δ([ν−dρ1, ν

−cρ1])o π̂1 contains a unique
irreducible subrepresentation.

On the other hand, by Frobenius reciprocity every irreducible subrepre-
sentation of δ([ν−dρ1, ν

−cρ1]) o π̂1 contains ν−cρ1 ⊗ · · · ⊗ ν−dρ1 ⊗ π̂1 in the
Jacquet module with respect to the appropriate parabolic subgroup. Thus,
π̂ has to be the unique irreducible subrepresentation of δ([ν−dρ1, ν

−cρ1])o π̂1.
This ends the proof.

Lemma 2.8. Let c and d denote positive real numbers such that d − c is
a nonnegative integer. Let ρ1 ∈ R(GL) denote an irreducible cuspidal self-
contragredient representation. Suppose that π is a subrepresentation of an
induced representation of the form ζ([νcρ1, ν

dρ1]) × (νdρ1)m o π1, where π1

is an irreducible representation such that the Jacquet module of π1 with re-
spect to the appropriate parabolic subgroup does not contain an irreducible
constituent of the form νd−kρ1 ⊗ · · · ⊗ νd−1ρ1 ⊗ νdρ1 ⊗ π′ for a nonnegative
integer k < d, with π′ ∈ R(G). Then π̂ is the unique irreducible subrepresen-
tation of δ([ν−dρ1, ν

−cρ1])× (ν−dρ1)m o π̂1.

Lemma 2.9. Suppose that ρ0 6∼= ρ and let π denote an irreducible subquotient
of δ([νaρ0, ν

bρ0]) o δ(ρ, x;σ). Then there is an irreducible representation
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π1 ∈ R(G) such that π is a subrepresentation of δ([ναρ, νxρ]) o π1 and π̂ is
the unique irreducible subrepresentation of ν−xρ× ν−x+1ρ× · · · × ν−αρo π̂1.
Furthermore, if π̂1

∼= L(δ1, δ2, . . . , δk; τtemp), where e(δi) ≤ e(δj) for i ≤ j,
then

π̂ ∼= L(ν−xρ, ν−x+1ρ, . . . , ν−αρ, δ1, δ2, . . . , δk; τtemp).

Proof. By the results of [26], there is an irreducible tempered representation
τ ∈ R(G) such that either π ∼= τ or π ∼= L(δ([νcρ0, ν

−aρ0]); τ), for some
c ≥ −b such that c−a < 0. Also, it is easy to see that there is an irreducible
representation τ1 such that τ is a subrepresentation of δ([ναρ, νxρ])o τ1, and
there are no twists of ρ appearing in the cuspidal support of τ1. If π ∼= τ , we
can take π1

∼= τ1. Otherwise, since ρ0 6∼= ρ we have

π ↪→ δ([νcρ0, ν
−aρ0]) o τ ↪→ δ([νcρ0, ν

−aρ0])× δ([ναρ, νxρ]) o τ1

∼= δ([ναρ, νxρ])× δ([νcρ0, ν
−aρ0]) o τ1,

and by [25, Lemma 3.2] there is an irreducible representation π1 such that
π is a subrepresentation of δ([ναρ, νxρ]) o π1. Since there are no twists of ρ
appearing in the cuspidal support of π1, it can be seen in the same way as in
the proof of Lemma 2.7 that π̂ is the unique irreducible subrepresentation of
ν−xρ× ν−x+1ρ× · · · × ν−αρo π̂1.

If we write π̂1
∼= L(δ1, δ2, . . . , δk; τtemp), then δi ∼= δ([νxiρ0, ν

yiρ0]) for
i = 1, 2, . . . , k, and we have νzρ × δi ∼= δi × νzρ for all i = 1, 2, . . . , k and
z ∈ R. This ends the proof.

The following result provides embeddings needed for an inductive deter-
mination of the Aubert duals.

Proposition 2.10. Let ρ1 ∈ R(GL) denote an irreducible self-contragredient
cuspidal representation, and let σsp ∈ R(G) denote a strongly positive discrete
series. Let k, l denote half-integers such that k − l is a positive integer and
k + l > 0.

(1) If νkρ1 o σsp is irreducible and k ≥ −l+ 2, then L(δ([ν−kρ1, ν
−lρ1]);σsp)

is a subrepresentation of νkρ1 o L(δ([ν−k+1ρ1, ν
−lρ1]);σsp).

(2) If µ∗(σsp) does not contain an irreducible constituent of the form ν−lρ1⊗
π, with π ∈ R(G), then L(δ([ν−kρ1, ν

−lρ1]);σsp) is a subrepresentation
of ν−lρ1 o L(δ([ν−kρ1, ν−l−1ρ1]);σsp).
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(3) Suppose that σsp is a subrepresentation of νtρ1 o σ′sp for some t 6= k, t 6=
−l+1 and a strongly positive representation σ′sp. Then L(δ([ν−kρ1, ν

−lρ1]);
σsp) is a subrepresentation of νtρ1 o L(δ([ν−kρ1, ν

−lρ1]);σ′sp).

Proof. We only prove the first part of the proposition, other parts can be
proved in the same way but more easily. We have the following embeddings
and isomorphisms:

L(δ([ν−kρ1, ν
−lρ1]);σsp) ↪→ δ([ν−kρ1, ν

−lρ1]) o σsp

↪→ δ([ν−k+1ρ1, ν
−lρ1])× ν−kρ1 o σsp

∼= δ([ν−k+1ρ1, ν
−lρ1])× νkρ1 o σsp

∼= νkρ1 × δ([ν−k+1ρ1, ν
−lρ1]) o σsp.

By Lemma 2.5, there is an irreducible subquotient π of δ([ν−k+1ρ1, ν
−lρ1])o

σsp such that L(δ([ν−kρ1, ν
−lρ1]);σsp) is a subrepresentation of νkρ1 o π.

Frobenius reciprocity implies that µ∗(νkρ1 o π) contains δ([ν−kρ1, ν
−lρ1]) ⊗

σsp.
Using the structural formula and a description of the Jacquet modules

of strongly positive representations, provided in [18, Theorem 4.6] and [23,
Section 7], we deduce that µ∗(δ([ν−k+1ρ1, ν

−lρ1]) o σsp) does not contain an
irreducible constituent of the form δ([ν−kρ1, ν

−lρ1]) ⊗ π1, with π1 ∈ R(G).
Thus, µ∗(π) contains δ([ν−k+1ρ1, ν

−lρ1])⊗ σsp and it is a direct consequence
of the Langlands classification that π ∼= L(δ([ν−k+1ρ1, ν

−lρ1]);σsp).

Note that both description of subquotients of δ([νaρ0, ν
bρ0]) o δ(ρ, x;σ)

and their Aubert duals depend on the reduciblity point β of ρ0 and σ [22, 26].
Description of the Aubert duals happens to be slightly different in the case
β = 0. Accordingly we also consider two cases: Section 3 is the case β = 0
(Section 5 of [22]) and Section 4, 5, 6 is the case β > 0 (Section 4 of [22]).

3 Case β = 0

In this section we consider the β = 0 case. Note that this implies a ∈ Z.
The following irreducibility result is a direct consequence of [26, Propo-

sition 3.1].

Proposition 3.1. Degenerate principal series ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ)

is irreducible if and only if a ≥ 1.
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We consider the remaining cases in the following proposition.

Proposition 3.2. Suppose that a ≤ 0, and write ρ0oσ = τ1 + τ−1, as a sum
of mutually non-isomorphic irreducible tempered representations. If −a < b,
then in R(G) we have:

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ1)+

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ−1)+

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−2ρ0, δ([ν

a−1ρ0, ν
aρ0]), . . . , δ([ν−1ρ0, ρ0];σ)).

If −a = b, then in R(G) we have:

ζ([νaρ0, ν
−aρ0]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−αρ, νaρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ1)+

L(ν−xρ, . . . , ν−αρ, νaρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ−1).

Proof. We will only comment the case −a < b, since the case −a = b can
be handled in the same way as in the proof of [22, Theorem 5.1]. By [26,
Theorem 2.1] and classification of discrete series [15, 25], in R(G) we have

δ([νaρ0, ν
bρ0]) o δ(ρ, x;σ) = σ1 + σ−1 + L(δ([ν−bρ0, ν

−aρ0]); δ(ρ, x;σ)),

where σi is a discrete series subrepresentation of δ([νaρ0, ν
bρ0]) o δ(ρ, x;σ)

such that

µ∗(σi) ≥ δ([νρ0, ν
−aρ0])× δ([νρ0, ν

bρ0])× δ([ναρ, νxρ])⊗ τi

and

µ∗(σi) 6≥ δ([νρ0, ν
−aρ0])× δ([νρ0, ν

bρ0])× δ([ναρ, νxρ])⊗ τ−i,

for i ∈ {1,−1}.
Since σi is a subrepresentation of δ([νaρ0, ν

bρ0]) o δ(ρ, x;σ), for i ∈
{1,−1}, we have

σi ↪→ δ([νaρ0, ν
bρ0]) o δ(ρ, x;σ) ↪→ δ([νaρ0, ν

bρ0])× δ([ναρ, νxρ]) o σ

∼= δ([ναρ, νxρ])× δ([νaρ0, ν
bρ0]) o σ.
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By Lemma 2.5, there is an irreducible subquotient πi of δ([νaρ0, ν
bρ0]) o σ

such that σi is a subrepresentation of δ([ναρ, νxρ]) o πi.
Using [26, Theorem 2.1] and classification of discrete series one more time,

we obtain that in R(G) we have

δ([νaρ0, ν
bρ0]) o σ = σ′1 + σ′−1 + L(δ([ν−bρ0, ν

−aρ0]);σ),

where σ′i is a discrete series subrepresentation of δ([νaρ0, ν
bρ0])oσ such that

µ∗(σ′i) ≥ δ([νρ0, ν
−aρ0]) × δ([νρ0, ν

bρ0]) ⊗ τi and µ∗(σ′i) 6≥ δ([νρ0, ν
−aρ0]) ×

δ([νρ0, ν
bρ0])⊗τ−i, for i ∈ {1,−1}. Also, note that µ∗(L(δ([ν−bρ0, ν

−aρ0]);σ))
does not contain δ([νaρ0, ν

bρ0]) ⊗ σ, since both µ∗(σ′1) and µ∗(σ′−1) contain
δ([νaρ0, ν

bρ0])⊗σ, and µ∗(δ([νaρ0, ν
bρ0])oσ) contains δ([νaρ0, ν

bρ0])⊗σ with
multiplicity two.

Thus, πi ∼= σ′i. Now Lemma 2.9 and [22, Theorem 5.1] imply that

σ̂i ∼= L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ−i).

In the same way we obtain that L(δ([ν−bρ0, ν
−aρ0]); δ(ρ, x;σ)) is a subrep-

resentation of δ([ναρ, νxρ]) o L(δ([ν−bρ0, ν
−aρ0]);σ). By Lemma 2.9, it re-

mains to determine the Aubert dual of L(δ([ν−bρ0, ν
−aρ0]);σ). Since b > 0,

if b ≥ −a + 2 then using the first part of Proposition 2.10 we get that
L(δ([ν−bρ0, ν

−aρ0]);σ) is a subrepresentation of νbρ0oL(δ([ν−b+1ρ0, ν
−aρ0]);σ).

Also, it follows from the structural formula that µ∗(L(δ([ν−b+1ρ0, ν
−aρ0]);σ))

does not contain an irreducible constituent of the form νbρ0 ⊗ π′. Using
Lemma 2.7 and repeating this procedure, we deduce that the Aubert dual of
L(δ([ν−bρ0, ν

−aρ0]);σ) is an irreducible subrepresentation of

ν−bρ0 × · · · × νa−2ρ0 o ̂L(δ([νa−1ρ0, ν−aρ0]);σ).

The representation L(δ([νa−1ρ0, ν
−aρ0]);σ) is the unique irreducible quotient

of the induced representation δ([νaρ0, ν
−a+1ρ0]) o σ. By [26, Theorem 2.1],

δ([νaρ0, ν
−a+1ρ0])oσ contains two irreducible subrepresentations and Frobe-

nius reciprocity implies that each of them contains an irreducible constituent
of the form ν−a+1ρ0⊗π in the Jacquet module with respect to the appropriate
parabolic subgroup.

If ν−a+1ρ0 ⊗ π is an irreducible constituent of µ∗(δ([νaρ0, ν
−a+1ρ0]) o σ),

it follows from the structural formula that π is an irreducible subquotient
of δ([νaρ0, ν

−aρ0]) o σ, which is a length two representation. Thus, there
are only two irreducible constituents of the form ν−a+1ρ0 ⊗ π appearing
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µ∗(δ([νaρ0, ν
−a+1ρ0]) o σ), and µ∗(L(δ([νa−1ρ0, ν

−aρ0]);σ)) does not contain
any of them.

From the second part of Proposition 2.10 follows that L(δ([νa−1ρ0, ν
−aρ0]);σ)

is a subrepresentation of ν−aρ0 o L(δ([νa−1ρ0, ν
−a−1ρ0]);σ).

Since a− 1 ≤ −1, using the first part of Proposition 2.10 we also obtain

L(δ([νa−1ρ0, ν
−a−1ρ0]);σ) ↪→ ν−a+1ρ0 o L(δ([νaρ0, ν

−a−1ρ0]);σ).

Consequently, L(δ([νa−1ρ0, ν
−aρ0]);σ) is a subrepresentation of

ν−aρ0 × ν−a+1ρ0 o L(δ([νaρ0, ν
−a−1ρ0]);σ),

and there is an irreducible subquotient π2 of ν−aρ0 × ν−a+1ρ0 such that
L(δ([νa−1ρ0, ν

−aρ0]);σ) is a subrepresentation of π2oL(δ([νaρ0, ν
−a−1ρ0]);σ).

Since µ∗(L(δ([νa−1ρ0, ν
−aρ0]);σ)) does not contain an irreducible constituent

of the form ν−a−1ρ0⊗ π′, it follows that π2 6∼= δ([ν−aρ0, ν
−a+1ρ0]), so we have

that π2
∼= ζ([ν−aρ0, ν

−a+1ρ0]). It can also be seen, following the same argu-
ments as for L(δ([νa−1ρ0, ν

−aρ0]);σ), that µ∗(L(δ([νaρ0, ν
−a−1ρ0]);σ)) does

not contain an irreducible constituents of the form νiρ0 ⊗ π′, for i ∈ {−a +

1,−a}. Now Lemma 2.7 implies that ̂L(δ([νa−1ρ0, ν−aρ0]);σ) is the unique

irreducible subrepresentation of δ([νa−1ρ0, ν
aρ0]) o ̂L(δ([νaρ0, ν−a−1ρ0]);σ),

and a repeated application of this procedure ends the proof.

4 Case a ≥ 1

From now on, we assume that β > 0. In this section we consider the case
a ≥ 1. Let us first consider the more complicated case ρ0

∼= ρ. Directly from
[26, Proposition 3.1] we obtain the following reducibility criterion:

Proposition 4.1. Degenerate principal series ζ([ν−bρ, ν−aρ])o ζ(ρ, x;σ) re-
duces if and only if one of the following holds:

• a ≤ α− 1 ≤ b < x,

• a ≤ x+ 1 and x < b.

Proposition 4.2. If a ≤ α− 1 ≤ b < x, then in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−aρ;σ)+

L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+2ρ, . . . , ν−aρ;σ).
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Proof. In R(G) we have

δ([νaρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ))+

L(δ([ν−α+2ρ, ν−aρ]);σsp),

where σsp is the unique irreducible subrepresentation of δ([να−1ρ, νbρ]) o
δ(ρ, x;σ). We note that σsp is a strongly positive discrete series.

Let us first determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)).
The third part of Proposition 2.10 implies that

L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) ↪→ νxρo L(δ([ν−bρ, ν−aρ]); δ(ρ, x− 1;σ)).

Using the structural formula and a description of the Jacquet modules of
strongly positive representations, we deduce that µ∗(δ([ν−bρ, ν−aρ])oδ(ρ, x−
1;σ)) does not contain an irreducible constituent of the form νxρ⊗ π2. Re-
peating this procedure and using Lemma 2.7, we obtain that the Aubert dual
of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) is an irreducible subrepresentation of

ν−xρ× ν−x+1ρ× · · · × ν−b−1ρo ̂L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)).

Since νbρo δ(ρ, b;σ) is irreducible, by [26, Proposition 3.1], we have

L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) ↪→ δ([ν−b+1ρ, ν−aρ])× ν−bρo δ(ρ, b;σ)

∼= δ([ν−b+1ρ, ν−aρ])× νbρo δ(ρ, b;σ)

↪→ δ([ν−b+1ρ, ν−aρ])× νbρ× νbρo δ(ρ, b− 1;σ)

∼= νbρ× νbρ× δ([ν−b+1ρ, ν−aρ]) o δ(ρ, b− 1;σ).

Note that δ([ν−b+1ρ, ν−aρ]) o δ(ρ, b− 1;σ) is irreducible, thus isomorphic to
L(δ([ν−b+1ρ, ν−aρ]); δ(ρ, b−1;σ)) and that µ∗(δ([ν−b+1ρ, ν−aρ])oδ(ρ, b−1;σ))
does not contain an irreducible constituent of the form νbρ⊗ π. A repeated
application of Lemma 2.7 and the previous procedure implies that the Aubert
dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) is an irreducible subrepresentation of

ν−bρ× ν−bρ× · · · × ν−αρ× ν−αρo ̂L(δ([ν−α+1ρ, ν−aρ]);σ).

Since the induced representation δ([ν−α+1ρ, ν−aρ])o σ is also irreducible, its
Jacquet module with respect to the appropriate parabolic subgroup con-
tains να−1ρ ⊗ · · · ⊗ νaρ ⊗ σ. Now Lemma 2.6 implies that the Aubert
dual of L(δ([ν−α+1ρ, ν−aρ]);σ) is the unique irreducible subrepresentation of
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ν−α+1ρ×· · ·×ν−aρoσ. Altogether, the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ))
is isomorphic to

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−aρ;σ).

It remains to determine the Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σsp).
If x > b + 1, it follows from [18, Section 3] that σsp is a subrepre-

sentation of νxρ o σ′sp, where σ′sp is the unique irreducible subrepresen-
tation of δ([να−1ρ, νbρ]) o δ(ρ, x − 1;σ). The third part of Proposition
2.10 implies that L(δ([ν−α+2ρ, ν−aρ]);σsp) is a subrepresentation of νxρ o
L(δ([ν−α+2ρ, ν−aρ]);σ′sp). Using Lemma 2.7 and continuing in the same way,
we deduce that the Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σsp) is a subrepresen-
tation of

ν−xρ× · · · × ν−b−2ρo ̂
L(δ([ν−α+2ρ, ν−aρ]);σ

(1)
sp ),

where σ
(1)
sp is the unique irreducible subrepresentation of δ([να−1ρ, νbρ]) o

δ(ρ, b + 1;σ). From embeddings of strongly positive representations ([18,
Section 3]), using Proposition 2.10 (3) twice, we get

L(δ([ν−α+2ρ, ν−aρ]);σ(1)
sp ) ↪→ νbρ× νb+1ρo L(δ([ν−α+2ρ, ν−aρ]);σ(2)

sp ),

where σ
(2)
sp is the unique irreducible subrepresentation of δ([να−1ρ, νb−1ρ]) o

δ(ρ, b;σ). Now [18, Theorem 3.4] implies

L(δ([ν−α+2ρ, ν−aρ]);σ(1)
sp ) ↪→ ζ([νbρ, νb+1ρ]) o L(δ([ν−α+2ρ, ν−aρ]);σ(2)

sp ).

Using a repeated application of Lemma 2.7 and continuing in the same way,
we obtain that the Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σ

(1)
sp ) is a subrepre-

sentation of

δ([ν−b−1ρ, ν−bρ])× · · · × δ([ν−αρ, ν−α+1ρ]) o ̂L(δ([ν−α+2ρ, ν−aρ]);σ),

and it can be seen in the same way as in the case of L(δ([ν−α+1ρ, ν−aρ]);σ)
that the Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σ) is the unique irreducible sub-
representation of ν−α+2ρ× · · · × ν−aρo σ. This ends the proof.

Proposition 4.3. Suppose that a ≤ x+1 and x < b. If a > α, then in R(G)
we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−aρ, ν−aρ, ν−a+1ρ, . . . , ν−αρ;σ)+

L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−aρ, ν−a+1ρ]), ν−a+2ρ, . . . , ν−αρ;σ).
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If a ≤ α, then in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−aρ;σ)+

L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−α−1ρ, ν−αρ]);σsp),

where σsp is the unique irreducible subrepresentation of νaρ× · · · × ναρo σ.

Proof. Under the assumptions of the proposition, in R(G) we have

δ([νaρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ))+

L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)).

Let us first determine the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)). Using
the third part of Proposition 2.10 and Lemma 2.7, we obtain that it is an
irreducible subrepresentation of

ν−bρ× · · · × ν−x−1ρo ̂L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)).

Note that the induced representation νxρoδ(ρ, x;σ) is irreducible. Using the
second part of Proposition 2.10 we deduce that L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ))
is a subrepresentation of νxρo L(δ([ν−x+1ρ, ν−aρ]); δ(ρ, x;σ)), and then the
third part of the same proposition gives an embedding

L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) ↪→ νxρ×νxρoL(δ([ν−x+1ρ, ν−aρ]); δ(ρ, x−1;σ)).

We can continue in the same way to obtain the Aubert dual of L(δ([ν−xρ, ν−aρ]);
δ(ρ, x;σ)) using Lemma 2.7.

If a = α, it follows that the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ))
is an irreducible subrepresentation of

ν−xρ× ν−xρ× · · · × ν−aρ× ν−aρo σ.

If a > α, it follows that the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) is an
irreducible subrepresentation of

ν−xρ× ν−xρ× · · · × ν−aρ× ν−aρo ̂δ(ρ, a− 1;σ),

and it follows from [20, Theorem 3.5] that ̂δ(ρ, a− 1;σ) ∼= L(ν−a+1ρ, . . . , ν−αρ;σ).
Finally, if a < α, it follows that the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ))
is an irreducible subrepresentation of

ν−xρ× ν−xρ× · · · × ν−αρ× ν−αρo ̂L(δ([ν−α+1ρ, ν−aρ]);σ),
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and the Aubert dual of L(δ([ν−α+1ρ, ν−aρ]);σ) is the unique irreducible sub-
representation of ν−α+1ρ× · · · × ν−aρo σ, as before.

Let us now determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)).
First, using Lemma 2.7, together with the first part of Proposition 2.10, we
obtain that it is an irreducible subrepresentation of

ν−bρ× · · · × ν−x−2ρo ̂L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)).

Note that, by [26, Proposition 3.1], in R(G) we have

δ([νaρ, νx+1ρ]) o δ(ρ, x;σ)) = L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))+

L(δ([ν−xρ, ν−aρ]); δ(ρ, x+ 1;σ)).

Since δ([νaρ, νxρ]) o δ(ρ, x;σ) is irreducible, the structural formula directly
implies that νx+1ρ ⊗ δ([νaρ, νxρ]) o δ(ρ, x;σ) is the unique irreducible con-
stituent of the form νx+1ρ ⊗ π appearing in µ∗(δ([νaρ, νx+1ρ]) o δ(ρ, x;σ)),
which appears there with multiplicity one, and it obviously appears in
µ∗(L(δ([ν−xρ, ν−aρ]); δ(ρ, x+1;σ))). Thus, µ∗(L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)))
does not contain an irreducible constituent of the form νx+1ρ⊗ π.

Now, using the third part of Proposition 2.10, and then the first part of
the same proposition, we obtain an embedding

L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)) ↪→
ζ([νxρ, νx+1ρ]) o L(δ([ν−xρ, ν−aρ]); δ(ρ, x− 1;σ)).

Also, in the same way as before we conclude that µ∗(L(δ([ν−xρ, ν−aρ]); δ(ρ, x−
1;σ))) does not contain an irreducible constituent of the form νiρ ⊗ π, for
i ∈ {x, x+ 1}. Using Lemma 2.7 and repeating this procedure, we obtain an
embedding of the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)).

If a = α, it follows that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))
is an irreducible subrepresentation of

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−a−1ρ, ν−aρ]) o ̂L(ν−αρ;σ),

and it follows from [20, Theorem 3.5] that the Aubert dual of L(ν−αρ;σ) is
isomorphic to δ(ρ, α;σ). Note that for a = α we have σsp ∼= δ(ρ, α;σ).

If a > α, it follows that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))
is an irreducible subrepresentation of

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−a−1ρ, ν−aρ]) o ̂δ(ρ, a− 2;σ),
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and it follows from [20, Theorem 3.5] that the Aubert dual of δ(ρ, a − 2;σ)
is the unique irreducible subrepresentation of ν−a+2ρ× · · · × ν−αρo σ.

If a < α, it follows that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))
is an irreducible subrepresentation of

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−α−1ρ, ν−αρ]) o ̂L(δ([ν−αρ, ν−aρ]);σ),

and it follows from [20, Theorem 3.5] that the Aubert dual of L(δ([ν−αρ, ν−aρ]);σ)
is the unique irreducible subrepresentation of νaρ × · · · × ναρ o σ, which is
strongly positive. This proves the proposition.

Let us now consider the case ρ0 6∼= ρ. The following proposition can be
proved in the same way as Proposition 4.3, using Lemma 2.9, details being
left to the reader.

Proposition 4.4. Degenerate principal series ζ([ν−bρ0, ν
−aρ0])oζ(ρ, x;σ) is

irreducible if and only if either a > β or b < β. If ζ([ν−bρ0, ν
−aρ0])oζ(ρ, x;σ)

reduces, in R(G) we have

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ) =

L(ν−bρ0, . . . , ν
−aρ0, ν

−xρ, . . . , ν−αρ;σ)+

L(ν−bρ0, . . . , ν
−β−1ρ0, ν

−xρ, . . . , ν−αρ;σsp),

where σsp is the unique irreducible subrepresentation of νaρ0×· · ·×νβρ0oσ.

5 Case a ≤ 0

In this section we analyze the case when a ≤ 0. To make the notation
uniform, we let τ (1) = ρ0 o σ if a ∈ Z and τ (1) = σ if a 6∈ Z. Also, if a 6∈ Z,
let τ (2) denote the unique irreducible (strongly positive) subrepresentation of

ν
1
2ρ0 × ν

3
2ρ0 × · · · × νβρ0 o σ. If a ∈ Z, let τ ′ denote the unique irreducible

(strongly positive) subrepresentation of νρ0 × · · · × νβρ0 o σ and let τ (2)

denote an irreducible (tempered) subrepresentation of ρ0 o τ ′ which does
not contain an irreducible representation of the form νρ0 ⊗ π in the Jacquet
module with respect to the appropriate parabolic subgroup. We note that
such a subrepresentation of ρ0 o τ ′ is unique by [29, Section 4].

For an irreducible self-contragredient cuspidal representation ρ1 ∈ R(GL)

and an irreducible cuspidal representation σ1 ∈ R(G) such that ν
1
2ρ1 o σ1
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reduces, we denote by τ(ρ1, σ1) the unique irreducible tempered subrepre-

sentation of δ([ν−
1
2ρ1, ν

1
2ρ1])oσ1 which is not a subrepresentation of ν

1
2ρ1×

ν
1
2ρ1 o σ1, Also, for a real number y let dye stand for the smallest integer

which is not smaller than y.
We will again first consider the more complicated case ρ0

∼= ρ. Let us
first assume that −a = b.

Proposition 5.1. Degenerate principal series ζ([ν−aρ, νaρ]) o ζ(ρ, x;σ) is
irreducible if and only if either −a ≤ α − 2 or −a = x. If α − 2 < −a < x,
in R(G) we have

ζ([ν−aρ, νaρ]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , νa−1ρ, νaρ, νaρ, νaρ, . . . , ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . ,

νdαe−α−1ρ, νdαe−α−1ρ; τ (1)) + π,

where

π ∼= L(ν−xρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ,

ν−α+2ρ, ν−α+2ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)),

if α ≥ 3
2
,

π ∼= L(ν−xρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−2ρ, ν−1ρ]), ν−1ρ, δ([ν−1ρ, ρ]);σ),

if α = 1,

π ∼= L(ν−xρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−
5
2ρ, ν−

3
2ρ]), ν−

3
2ρ,

δ([ν−
3
2ρ, ν−

1
2ρ]); τ(ρ, σ)),

if α = 1
2
.

If −a > x, in R(G) we have

ζ([ν−aρ, νaρ]) o ζ(ρ, x;σ) =

L(νaρ, νaρ, . . . , ν−x−1ρ, ν−x−1ρ, ν−xρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−αρ,

ν−α+1ρ, ν−α+1ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1))+

L(νaρ, νaρ, . . . , ν−x−2ρ, ν−x−2ρ, ν−x−1ρ, δ([ν−x−1ρ, ν−xρ]), . . . ,

ν−α−1ρ, δ([ν−α−1ρ, ν−αρ]), ν−αρ, . . . , νdαe−α−1ρ; τ (2)).
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Proof. Reducibility of δ([ν−aρ, νaρ])oδ(ρ, x;σ) is an integral part of the clas-
sification of discrete series. If such an induced representation reduces, it is
a direct sum of two mutually non-isomorphic irreducible tempered represen-
tation, whose Aubert duals can be easily obtained from [22, Theorem 4.11,
Theorem 4.16, Theorem 4.21].

Now we deal with the case −a < b. The reducibility criterion follows
from [26, Theorem 4.1(i)]:

Proposition 5.2. Degenerate principal series ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) is
irreducible if and only if one of the following holds:

• b < α− 1,

• −a < α− 1 and b = x.

Other possibilities will be studied using a case-by-case consideration.

Proposition 5.3. Suppose that α− 1 ≤ −a < b < x. Let

π1
∼= L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([νa−2ρ, νa−1ρ]),

δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ,

ν−α+2ρ, ν−α+2ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1))

if α ≥ 3
2
,

π1
∼= L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([νa−2ρ, νa−1ρ]),

δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−2ρ, ν−1ρ]), ν−1ρ, δ([ν−1ρ, ρ]);σ)

if α = 1, and

π1
∼= L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([νa−2ρ, νa−1ρ]),

δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−
5
2ρ, ν−

3
2ρ]), ν−

3
2ρ, δ([ν−

3
2ρ, ν−

1
2ρ]); τ(ρ, σ)),

if α = 1
2
.

Also, let

π2
∼= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−αρ, δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ, ν−α+2ρ, ν−α+2ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)).
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if α ≥ 3
2
,

π2
∼= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−1ρ, δ([ν−1ρ, ρ]), σ),

if α = 1, and

π2
∼= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−
3
2ρ, δ([ν−

3
2ρ, ν−

1
2ρ]); τ(ρ, σ)),

if α = 1
2
.

Then in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−1ρ, νa−1ρ, νaρ, νaρ, νaρ, . . . ,

ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)) + π1 + π2.

Proof. By [26, Theorem 2.1], in R(G) we have

δ([νaρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + σ1 + σ2,

where σ1, σ2 are mutually non-isomorphic discrete series representations.
Aubert duals of σ1 and σ2 have been obtained in [22, Theorems 4.11, 4.16].
It remains to determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)). Us-
ing Proposition 2.10(3) and Lemma 2.7, we deduce that the Aubert dual of
L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) is an irreducible subrepresentation of

ν−xρ× · · · × ν−b−1ρo ̂L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)).

If b > −a+ 1, we have the following embeddings and isomorphisms:

L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) ↪→ δ([ν−b+1ρ, ν−aρ])× ν−bρo δ(ρ, b;σ)

∼= δ([ν−b+1ρ, ν−aρ])× νbρo δ(ρ, b;σ)

∼= νbρ× δ([ν−b+1ρ, ν−aρ]) o δ(ρ, b;σ)

↪→ νbρ× δ([ν−b+1ρ, ν−aρ])× νbρo δ(ρ, b− 1;σ)

∼= νbρ× νbρ× δ([ν−b+1ρ, ν−aρ]) o δ(ρ, b− 1;σ).

Thus, there is an irreducible subquotient π of δ([ν−b+1ρ, ν−aρ])oδ(ρ, b−1;σ)
such that L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) is a subrepresentation of νbρ×νbρoπ.
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Since µ∗(L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ))) ≥ δ([ν−bρ, ν−aρ])⊗ δ(ρ, b;σ), it follows
that π ∼= L(δ([ν−b+1ρ, ν−aρ]); δ(ρ, b−1;σ)). Obviously, µ∗(L(δ([ν−b+1ρ, ν−aρ]);
δ(ρ, b−1;σ))) does not contain an irreducible constituent of the form νbρ⊗π1.
Repeated application of this procedure and Lemma 2.7 lead us to an embed-
ding

̂L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) ↪→

ν−bρ× ν−bρ× · · · × νa−2ρ× νa−2ρo ̂L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)).

Thus, it remains to determine ̂L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)). Proposi-
tion 2.10(2) implies that L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1; σ)) is a subrepresen-
tation of ν−aρ o L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a + 1; σ)), and in the same way
as before we get

L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)) ↪→
ν−aρ× ν−a+1ρ× ν−a+1ρo L(δ([νaρ, ν−a−1ρ]); δ(ρ,−a;σ)).

By [26, Theorem 4.1], in R(G) we have

δ([νaρ, ν−a+1ρ]) o δ(ρ,−a+ 1;σ) =

L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)) + τtemp,

where τtemp is the unique common irreducible subrepresentation of

δ([νa−1ρ, ν−a+1ρ]) o δ(ρ,−a;σ)

and
δ([νaρ, ν−a+1ρ]) o δ(ρ,−a+ 1;σ).

From the structural formula we obtain that

ν−a+1ρ× ν−a+1ρ⊗ δ([νaρ, ν−aρ]) o δ(ρ,−a;σ)

is the unique irreducible constituent of µ∗(δ([νaρ, ν−a+1ρ]) o δ(ρ,−a+ 1;σ))
of the form ν−a+1ρ× ν−a+1ρ⊗π′, which appears there with multiplicity one,
and by Frobenius reciprocity it is contained in µ∗(τtemp). Thus,

µ∗(L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)))
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does not contain an irreducible constituent of the form ν−a+1ρ×ν−a+1ρ⊗π′,
which yields

L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)) ↪→
ζ([ν−aρ, ν−a+1ρ])× ν−a+1ρo L(δ([νaρ, ν−a−1ρ]); δ(ρ,−a;σ)).

Also, µ∗(L(δ([νaρ, ν−a−1ρ]); δ(ρ,−a;σ))) does not contain an irreducible con-
stituent of the form ν−a+1ρ⊗ π′1, so using Lemma 2.8 and a repeated appli-
cation of this procedure, we get that the Aubert dual of L(δ([νa−1ρ, ν−aρ]);
δ(ρ,−a+ 1;σ)) is an irreducible subrepresentation of

νa−1ρ× δ([νa−1ρ, νaρ])× · · · × ν−α−1ρ× δ([ν−α−1ρ, ν−αρ])o
̂L(δ([ν−αρ, να−1ρ]); δ(ρ, α;σ)).

If α = 1
2
, by [22, Lemma 4.10] we have ̂L(δ([ν−αρ, να−1ρ]); δ(ρ, α;σ)) ∼=

τ(ρ, σ). If α > 1
2
, in the same way as before we get

̂L(δ([ν−αρ, να−1ρ]); δ(ρ, α;σ)) ↪→

ν−αρ× δ([ν−αρ, ν−α+1ρ]) o ̂L(δ([ν−α+1ρ, να−2ρ]);σ).

For α = 1, we have L(δ([ν−α+1ρ, να−2ρ]);σ) ∼= σ, and for α ≥ 3
2

we have

̂L(δ([ν−α+1ρ, να−2ρ]);σ) ↪→
ν−α+1ρ× ν−α+2ρ× ν−α+2ρ× · · · × νdαe−α−1ρ× νdαe−α−1ρo τ (1).

This ends the proof.

Proposition 5.4. If −a > x, in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−x−1ρ, ν−x−1ρ, ν−xρ, ν−xρ, ν−xρ, . . . ,

ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1))+

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−x−2ρ, ν−x−2ρ, ν−x−1ρ, δ([ν−x−1ρ, ν−xρ]), . . . ,

ν−α−1ρ, δ([ν−α−1ρ, ν−αρ]), ν−αρ, . . . , νdαe−α−1ρ; τ (2))+

L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), . . . , δ([ν−x−2ρ, ν−x−1ρ]),

δ([ν−x−1ρ, ν−xρ]), ν−xρ, . . . , δ([ν−α−1ρ, ν−αρ]), ν−αρ, ν−α+1ρ, . . . , νdαe−α−1ρ; τ (2)).
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Proof. Again, by [26, Theorem 2.1], in R(G) we have

δ([νaρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + σ1 + σ2,

where σ1, σ2 are mutually non-isomorphic discrete series representations. It is
enough to determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)), which
can be determined in a similar way as in the proof of the previous proposition,
details being left to the reader.

Proposition 5.5. Suppose that α− 1 ≤ −a < x ≤ b. Let

π1
∼= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]),

. . . , ν−
3
2ρ, δ([ν−

3
2ρ, ν−

1
2ρ]); τ(ρ, σ)),

if α = 1
2
,

π1
∼= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]),

. . . , ν−1ρ, δ([ν−1ρ, ρ]);σ),

if α = 1, and

π1
∼= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−αρ, δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ, ν−α+2ρ, ν−α+2ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)),

if α ≥ 3
2
.

Let

π2
∼= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−3ρ, νa−2ρ]),

δ([νa−2ρ, νaρ]), . . . , δ([ν−
3
2ρ, ν

1
2ρ]);σ),

if α = 1
2
,

π2
∼= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−3ρ, νa−2ρ]),

δ([νa−2ρ, νaρ]), . . . , δ([ν−2ρ, ρ]); δ(ρ, 1;σ)),

if α = 1, and

π2
∼= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−3ρ, νa−2ρ]),

δ([νa−2ρ, νaρ]), . . . , δ([ν−α−1ρ, ν−α+1ρ]), ν−α+2ρ, . . . , νdαe−α−1ρ; τ (2)),
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if α ≥ 3
2
.

If x < b, in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−1ρ, νa−1ρ, νaρ, νaρ, νaρ, . . . ,

ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1))+

L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−2ρ, νa−1ρ]), δ([νa−1ρ, νaρ]), νaρ,

. . . , δ([ν−α−1ρ, ν−αρ]), ν−αρ, ν−α+1ρ, . . . , νdαe−α−1ρ; τ (2))+

π1 + π2.

If x = b, in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−bρ, ν−bρ, . . . , νa−1ρ, νa−1ρ, νaρ, νaρ, νaρ, . . . , ν−αρ, ν−αρ, ν−αρ,

ν−α+1ρ, ν−α+1ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)) + π1.

Proof. Let us first consider the case x < b By [19, Proposition 3.2], in R(G)
we have

δ([νaρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + σ1+

L(δ([ν−bρ, νxρ]); δ(ρ,−a;σ)) + L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)),

where σ1 is the unique common discrete series subrepresentation of both
δ([νxρ, νbρ]) o δ(ρ, a;σ) and δ([νaρ, νxρ]) o δ(ρ, b;σ).

The Aubert duals of σ1 and of L(δ([ν−bρ, νxρ]); δ(ρ,−a;σ)) can be ob-
tained from Proposition 5.4, interchanging the roles of a and x. Also, the
Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)) can be obtained from Proposition
5.3, interchanging the roles of b and x.

It remains to determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)).
First, in the same way as in the previously considered cases we obtain that

̂L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) is a subrepresentation of

ν−bρ× · · · × ν−x−2ρo ̂L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)).

Also, if x > −a+ 1, we have

L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)) ↪→ νxρ×νx+1ρoL(δ([ν−xρ, ν−aρ]); δ(ρ, x−1;σ)),
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and there is an irreducible subquotient π1 of νxρ×νx+1ρ such that L(δ([ν−x−1ρ,
ν−aρ]); δ(ρ, x;σ)) is a subrepresentation of π1 o L(δ([ν−xρ, ν−aρ]); δ(ρ, x −
1;σ)).

The induced representation δ([νaρ, νx+1ρ]) o δ(ρ, x;σ) is a length four
representation, again by [19, Proposition 3.2]. If νx+1ρ⊗ π is an irreducible
constituent of µ∗(δ([νaρ, νx+1ρ])oδ(ρ, x;σ)), using the structural formula we
easily obtain that π is an irreducible subquotient of δ([νaρ, νxρ])o δ(ρ, x;σ).
From [26, Theorem 4.1] we conclude that µ∗(δ([νaρ, νx+1ρ])o δ(ρ, x;σ)) con-
tains two irreducible constituents of the form νx+1ρ ⊗ π, which have to be
contained in µ∗(L(δ([ν−xρ, ν−aρ]); δ(ρ, x + 1;σ))) and in µ∗(σ2), where σ2

is a discrete series subrepresentation of δ([νaρ, νx+1ρ]) o δ(ρ, x;σ). Thus,
µ∗(L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))) does not contain irreducible constituents
of the form νx+1ρ⊗ π, so π1

∼= ζ([νxρ, νx+1ρ]).
This can be used to conclude that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]);

δ(ρ, x;σ)) is a subrepresentation of

δ([ν−x−1ρ, ν−xρ])×· · ·×δ([νa−3ρ, νa−2ρ])o ̂L(δ([νa−2ρ, ν−aρ]); δ(ρ,−a+ 1;σ)).

Using Proposition 2.10(2), (3) and (1), respectively, we get

L(δ([νa−2ρ, ν−aρ]); δ(ρ,−a+ 1;σ)) ↪→
ν−aρ× ν−a+1ρ× ν−a+2ρo L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ)).

We have already seen that µ∗(L(δ([νa−2ρ, ν−aρ]); δ(ρ,−a + 1;σ))) does not
contain an irreducible constituent of the form ν−a+2ρ ⊗ π. If ν−a+1ρ ⊗ π
is an irreducible constituent of µ∗(δ([νaρ, ν−a+2ρ]) o δ(ρ,−a + 1;σ)), then
π is an irreducible subquotient of δ([νaρ, ν−a+2ρ]) o δ(ρ,−a;σ), which is
a length two representation. Thus, the Frobenius reciprocity can be used
to deduce that µ∗(L(δ([νa−2ρ, ν−a+1ρ]); δ(ρ,−a;σ))) and µ∗(σ3), where σ3

is a discrete series subrepresentation of δ([νa−2ρ, ν−aρ]) o δ(ρ,−a + 1; σ),
contain all irreducible constituents of the form ν−a+1ρ ⊗ π appearing in
µ∗(δ([νaρ, ν−a+2ρ])oδ(ρ,−a+1;σ)). So, L(δ([νa−2ρ, ν−aρ]); δ(ρ,−a+1;σ)) is
a subrepresentation of ζ([ν−aρ, ν−a+2ρ]) o L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ)).
In the same way it can be seen that µ∗(L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ))) does
not contain irreducible constituents of the form νyρ⊗π for π ∈ {−a,−a+1}.
Using Lemma 2.7 and continuing in the same way, we get that the Aubert
dual of L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ)) is a subrepresentation of

δ([νa−2ρ, νaρ])× · · · × δ([ν−α−2ρ, ν−αρ]) o ̂L(δ([ν−α−1ρ, να−1ρ]); δ(ρ, α;σ)).

28



Let us first consider the case α = 1
2
. Then it can be seen, using the

intertwining operators method, that L(δ([ν−
3
2ρ, ν−

1
2ρ]); δ(ρ, 1

2
;σ)) is a sub-

representation of ν−
1
2ρ × ν 1

2ρ × ν 3
2ρ o σ. Thus, there is an irreducible sub-

quotient π1 of ν−
1
2ρ× ν 1

2ρ× ν 3
2ρ such that L(δ([ν−

3
2ρ, ν−

1
2ρ]); δ(ρ, 1

2
;σ)) is a

subrepresentation of π1 o σ.
By [26, Theorem 5.1(ii)], in R(G) we have

δ([ν
1
2ρ, ν

3
2ρ]) o δ(ρ,

1

2
;σ) = L(δ([ν−

3
2ρ, ν−

1
2ρ]); δ(ρ,

1

2
;σ)) + σ4+

L(δ([ν−
3
2ρ, ν

1
2ρ]);σ) + L(ν−

1
2ρ; δ(ρ,

3

2
;σ)),

where σ4 is the unique discrete series subrepresentation of δ([ν
1
2ρ, ν

3
2ρ]) o

δ(ρ, 1
2
;σ).

Since both induced representations δ([ν
1
2ρ, ν

3
2ρ])o σ and ν

1
2ρo δ(ρ, 1

2
;σ)

are of length two (by [26, Theorem 5.1]), it follows from the structural for-

mula that µ∗(δ([ν
1
2ρ, ν

3
2ρ])o δ(ρ, 1

2
;σ)) contains exactly two irreducible con-

stituents of the form ν
3
2ρ⊗ π and exactly two irreducible constituents of the

form ν
1
2ρ⊗π. Now Frobenius reciprocity and transitivity of the Jacquet mod-

ules imply that all irreducible constituents of the form ν
3
2ρ⊗π are contained

in µ∗(σ4) and in µ∗(L(ν−
1
2ρ; δ(ρ, 3

2
;σ))), while all irreducible constituents of

the form ν
1
2ρ⊗ π are contained in µ∗(σ4) and in µ∗((L(δ([ν−

3
2ρ, ν

1
2ρ]);σ)).

Consequently, µ∗(L(δ([ν−
3
2ρ, ν−

1
2ρ]); δ(ρ, 1

2
;σ))) does not contain irreducible

constituents of the form νyρ⊗ π for y ∈ {1
2
, 3

2
}.

Thus, it follows that π1
∼= ζ([ν−

1
2ρ, ν

3
2ρ]), so L(δ([ν−

3
2ρ, ν−

1
2ρ]); δ(ρ, 1

2
;σ))

is a subrepresentation of ζ([ν−
1
2ρ, ν

3
2ρ])o σ. Now Lemma 2.7 can be used to

obtain that the Aubert dual of L(δ([ν−
3
2ρ, ν−

1
2ρ]); δ(ρ, 1

2
;σ)) is isomorphic to

L(δ([ν−
3
2ρ, ν

1
2ρ]);σ).

If α > 1
2
, in the same way as before we deduce that the Aubert dual of

L(δ([ν−α−1ρ, να−1ρ]); δ(ρ, α;σ)) is a subrepresentation of

δ([ν−α−1ρ, ν−α+1ρ]) o ̂L(δ([ν−αρ, να−2ρ]);σ).

If α = 1, from [20, Theorem 3.5] we deduce that ̂L(δ([ν−αρ, να−2ρ]);σ) ∼=
δ(ρ, 1;σ). If α ≥ 3

2
, from [22, Lemma 4.10] we get that ̂L(δ([ν−αρ, να−2ρ]);σ)

is the unique irreducible subrepresentation of ν−α+2ρ×· · ·×νdαe−α−1ρoτ (2).
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If x = b, in R(G) we have

δ([νaρ, νbρ]) o δ(ρ, b;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) + τ,

where τ is the unique common irreducible tempered subrepresentation of
δ([νaρ, νbρ]) o δ(ρ, b;σ) and δ([ν−bρ, νbρ]) o δ(ρ, a;σ). The Aubert dual of
the representation L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) has been determined in the
proof of Proposition 5.3, while the Aubert dual of τ can be obtained from
[22, Theorem 4.16].

Proposition 5.6. If −a < α− 2 and α− 1 ≤ b < x, in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , νa−1ρ,

νaρ, νaρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1))+

L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+2ρ, . . .

νa−1ρ, νaρ, νaρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)).

If −a = α− 2 and α− 1 ≤ b < x, in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, ν−α+2ρ, ν−α+2ρ,

. . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1))+

L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]),

ν−α+2ρ, ν−α+2ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)).

Proof. We discuss only the case −a = α− 2, since the case −a < α− 2 can
be handled in the same way, but more easily. Let us denote by σsp a strongly
positive discrete series subrepresentation of δ([να−1ρ, νbρ]) o δ(ρ, x;σ) ([17,
Section 4] or Proposition 2.3). Note that we have α ≥ 5

2
.

By [26, Theorem 4.1], in R(G) we have

δ([ν−α+2ρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, να−2ρ]); δ(ρ, x;σ)) + τ,

where τ is the unique common irreducible (tempered) subrepresentation of
induced representations δ([ν−α+2ρ, νbρ])o δ(ρ, x;σ) and δ([ν−α+2ρ, να−2ρ])o
σsp.
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Using the same reasoning as in the previously considered cases, we deduce
that the Aubert dual of L(δ([ν−bρ, να−2ρ]); δ(ρ, x;σ)) is isomorphic to

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, ν−α+2ρ, ν−α+2ρ,

. . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)).

Let us determine the Aubert dual of τ . If x > b + 1, it follows from the
classification provided in [17, Section 4] that σsp is a subrepresentation νxρo
σ

(1)
sp , where σ

(1)
sp is the unique irreducible subrepresentation of δ([να−1ρ, νbρ])o

δ(ρ, x−1;σ). Then τ is a subrepresentation of νxρoτ1, where τ1 is a common
irreducible subrepresentation of both δ([ν−α+2ρ, νbρ]) o δ(ρ, x − 1;σ) and

δ([ν−α+2ρ, να−2ρ]) o σ
(1)
sp . Continuing in this way we obtain that the Aubert

dual of τ is a subrepresentation of

ν−xρ× · · · × ν−b−2ρo τ̂2,

where τ2 is the unique common irreducible subrepresentation of δ([ν−α+2ρ, νbρ])o
δ(ρ, b+1;σ) and δ([ν−α+2ρ, να−2ρ])oσ(2)

sp , where σ
(2)
sp is the unique irreducible

subrepresentation of δ([να−1ρ, νbρ]) o δ(ρ, b+ 1;σ). Since σ
(2)
sp is a subrepre-

sentation of ζ([νb−1ρ, νbρ]) o σ
(3)
sp , where σ

(3)
sp is the unique irreducible sub-

representation of δ([να−1ρ, νb−1ρ]) o δ(ρ, b;σ), and µ∗(σ
(3)
sp ) does not contain

an irreducible constituent of the form νbρ⊗ π by [18, Theorem 4.6], we can
continue in the same way to obtain that τ̂2 is an irreducible subrepresentation
of

δ([ν−b−1ρ, ν−bρ])× · · · × δ([ν−α−1ρ, ν−αρ]) o τ̂3,

where τ3 is the unique common irreducible subrepresentation of δ([ν−α+2ρ,

να−1ρ]) o δ(ρ, α;σ) and δ([ν−α+2ρ, να−2ρ]) o σ
(4)
sp , where σ

(4)
sp is the unique

irreducible subrepresentation of να−1ρo δ(ρ, α;σ).
It follows at once that τ3 is a subrepresentation of the induced represen-

tation να−1ρ × ναρ o δ([ν−α+2ρ, να−2ρ]) o σ. Since δ([ν−α+2ρ, να−2ρ]) o σ

is irreducible and µ∗(σ
(4)
sp ) does not contain an irreducible constituent of the

form ναρ ⊗ π, it follows that τ3 is a subrepresentation of ζ([να−1ρ, ναρ]) ×
δ([ν−α+2ρ, να−2ρ])o σ. Now the rest of the proof follows in the same way as
in the previously considered cases. We note that the Aubert dual of τ3 can
also be obtained using [22, Lemma 4.13, Lemma 4.15].
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Proposition 5.7. If −a < α− 1 and x < b, in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−α−1ρ, ν−αρ]),

νaρ, . . . , νdαe−α−1ρ; τ (2))+

L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , νa−1ρ,

νaρ, νaρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)).

If −a = x, in R(G) we have

ζ([ν−bρ, ν−aρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−α−1ρ, ν−αρ]), ν−αρ

ν−α+1ρ, . . . , νdαe−α−1ρ; τ (2))+

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, νaρ, . . . , ν−αρ, ν−αρ, ν−αρ,

ν−α+1ρ, ν−α+1ρ, . . . , νdαe−α−1ρ, νdαe−α−1ρ; τ (1)).

Proof. If −a < α− 1 and x < b, in R(G) we have

δ([νaρ, νbρ]) o δ(ρ, x;σ) =

L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)).

In the same way as in the previously considered cases, we deduce that the
Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) is a subrepresentation of

ν−bρ×· · ·×ν−x−2ρ×δ([ν−x−1ρ, ν−xρ])×· · ·×δ([ν−α−1ρ, ν−αρ])o ̂L(δ([ν−αρ, ν−aρ]);σ),

and it has been already proved that the Aubert dual of L(δ([ν−αρ, ν−aρ]);σ)
is isomorphic to L(νaρ, . . . , νdαe−α−1ρ; τ (2)).

Next, the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)) is an irreducible
subrepresentation of

ν−bρ× · · · × ν−x−1ρo ̂L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)).

Since the induced representation δ([νaρ, νxρ]) o δ(ρ, x;σ) is irreducible, the
Jacquet module of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) with respect to the appropri-
ate parabolic subgroup contains

νxρ⊗ νxρ⊗ · · · ⊗ ναρ⊗ ναρ⊗ να−1ρ⊗ · · · ⊗ ν−a+1ρ⊗
ν−aρ⊗ ν−aρ⊗ · · · ⊗ να−dαe+1ρ⊗ να−dαe+1ρ⊗ τ ′,
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where τ ′ ∼= σ if a 6∈ Z and τ ′ ∼= ρ⊗ σ otherwise. Now, using Lemma 2.6 we
obtain the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)).

If −a = x, in R(G) we have

δ([νaρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ,−a;σ)) + τ,

where τ is the unique irreducible (tempered) common subrepresentation of
δ([νaρ, νbρ]) o δ(ρ,−a;σ) and δ([νaρ, ν−aρ]) o δ(ρ, b;σ). The Aubert dual of
L(δ([ν−bρ, ν−aρ]); δ(ρ,−a;σ)) can be obtained in the same way as before.

In a standard way we obtain that the Aubert dual of τ is a subrepresen-
tation of

ν−bρ× · · · × νa−1ρo τ̂ ′,

where τ ′ ∼= δ([νaρ, ν−aρ]) o δ(ρ,−a;σ), and now τ̂ ′ can be directly obtained
using Lemma 2.6. This ends the proof.

Now we turn our attention to the case ρ0 6∼= ρ. We assume that β 6= 0,
since the case β = 0 has been treated in the third section. We omit the
proofs, since all the results can be obtained in the same way as in the ρ0

∼= ρ
case, enhanced by Lemma 2.9.

Proposition 5.8. Suppose that ρ0 6∼= ρ. Then ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ)

is irreducible if and only if b < β. If b ≥ β and −a = b, in R(G) we have

ζ([ν−bρ0, ν
bρ0]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−αρ, ν−bρ0, ν
−bρ0, . . . , ν

dβe−β−1ρ0, ν
dβe−β−1ρ0; τ (1))+

L(ν−xρ, . . . , ν−αρ, ν−bρ0, ν
−bρ0, . . . , ν

−βρ0, ν
−βρ0, ν

−β+1ρ0, . . . , ν
dβe−β−1ρ0; τ (2)).

If β ≤ −a < b, in R(G) we have

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

dβe−β−1ρ0, ν
dβe−β−1ρ0; τ (1))+

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

−βρ0, ν
−βρ0,

ν−β+1ρ0, . . . , ν
dβe−β−1ρ0; τ (2))+

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−2ρ0, δ([ν

a−1ρ0, ν
aρ0]), . . . , δ([ν−β−1ρ0, ν

−βρ0]),

ν−β+1ρ0, . . . , ν
dβe−β−1ρ0; τ (2)).
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If −a < β = b, in R(G) we have

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

dβe−β−1ρ0, ν
dβe−β−1ρ0; τ (1))+

L(ν−xρ, . . . , ν−αρ, νaρ0, . . . , ν
dβe−β−1ρ0; τ (2)).

If −a < β < b, in R(G) we have

ζ([ν−bρ0, ν
−aρ0]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

dβe−β−1ρ0, ν
dβe−β−1ρ0; τ (1))+

L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
−β−1ρ0, ν

aρ0, . . . , ν
dβe−β−1ρ0; τ (2)).

6 Case a = 1
2

This section is devoted to the case a = 1
2
. Again, we first consider the more

complicated case ρ0
∼= ρ, and let τ(ρ1, σ1) be as in the previous section.

Irreducibility criterion is a direct consequence of [26, Theorem 5.1]:

Proposition 6.1. Degenerate principal series ζ([ν−bρ, ν−
1
2ρ]) o ζ(ρ, x;σ) is

irreducible if and only if one of the following holds:

• α > 1
2

and b = x,

• b < α− 1.

The composition factors in other cases are given in the following sequence
of propositions.

Proposition 6.2. If α > 1
2

and x < b, in R(G) we have

ζ([ν−bρ, ν−
1
2ρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−α−1ρ, ν−αρ]); τ (2))+

L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−
1
2ρ;σ).

Proof. By [26, Theorem 5.1], in R(G) we have:

δ([ν
1
2ρ, νbρ]) o δ(ρ, x;σ) =

L(δ([ν−bρ, ν−
1
2ρ]); δ(ρ, x;σ)) + L(δ([ν−xρ, ν−

1
2ρ]); δ(ρ, b;σ)).
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First, in a standard way, using the intertwining operators methods, Proposi-
tion 2.10(1) and Lemma 2.7, we get that the Aubert dual of L(δ([ν−bρ, ν−

1
2ρ]);

δ(ρ, x;σ)) is a subrepresentation of

ν−bρ× · · · × ν−x−2ρ× δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−α−1ρ, ν−αρ])o
̂

L(δ([ν−αρ, ν−
1
2ρ]);σ),

and by [20, Theorem 3.5] the Aubert dual of L(δ([ν−αρ, ν−
1
2ρ]);σ) is isomor-

phic to τ (2).
Using Proposition 2.10(3) and Lemma 2.7, we deduce that the Aubert

dual of L(δ([ν−xρ, ν−
1
2ρ]); δ(ρ, b;σ)) is a subrepresentation of

ν−bρ× · · · × ν−x−1ρo ̂
L(δ([ν−xρ, ν−

1
2ρ]); δ(ρ, x;σ)).

Now by irreducibility of δ([ν
1
2ρ, νxρ])oδ(ρ, x;σ), the rest of the proof follows

in the same way as in the proof of Proposition 5.7.

The following result can be obtained following the same lines as in the
proofs of Propositions 6.2 and 4.2.

Proposition 6.3. If α > 1
2

and α− 1 ≤ b < x, in R(G) we have

ζ([ν−bρ, ν−
1
2ρ]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−
1
2ρ;σ)+

L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+2ρ, . . . , ν−
1
2ρ;σ).

Proposition 6.4. If α = 1
2

and x < b, in R(G) we have

ζ([ν−bρ, ν−
1
2ρ]) o ζ(ρ, x;σ) =

L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−
1
2ρ, ν−

1
2ρ;σ)+

L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−
5
2ρ, ν−

3
2ρ]), δ([ν−

3
2ρ, ν

1
2ρ]);σ)+

L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−
3
2ρ, ν−

1
2ρ]); δ(ρ,

1

2
;σ))+

L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−
3
2ρ, ν−

3
2ρ; τ(ρ;σ)).
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Proof. By [26, Theorem 5.1], in R(G) we have:

δ([ν
1
2ρ, νbρ]) o δ(ρ, x;σ) = L(δ([ν−bρ, ν−

1
2ρ]); δ(ρ, x;σ)) + σds+

L(δ([ν−xρ, ν−
1
2ρ]); δ(ρ, b;σ)) + L(δ([ν−bρ, νxρ]);σ),

where σds is the unique common irreducible (discrete series) subrepresenta-

tion of both δ([ν
1
2ρ, νbρ]) o δ(ρ, x;σ) and δ([ν−xρ, νbρ]) o σ. Note that σ̂ds

has been determined in [22, Theorem 5.2.(i)].
Let us determine the Aubert duals of representations L(δ([ν−bρ, νxρ]);σ)

and L(δ([ν−bρ, ν−
1
2ρ]); δ(ρ, x;σ)). The Aubert dual of L(δ([ν−xρ, ν−

1
2ρ]); δ(ρ, b;σ))

can be obtained in a similar way, but more easily. Using the same arguments
as before, we obtain the following embeddings:

̂L(δ([ν−bρ, νxρ]);σ) ↪→ ν−bρ× · · · × ν−x−2ρo ̂L(δ([ν−x−1ρ, νxρ]);σ),

̂
L(δ([ν−bρ, ν−

1
2ρ]); δ(ρ, x;σ)) ↪→

ν−bρ× · · · × ν−x−2ρo ̂
L(δ([ν−x−1ρ, ν−

1
2ρ]); δ(ρ, x;σ)).

Since δ([ν
1
2ρ, νxρ]) o δ(ρ, x;σ) is a length two representation by [26, Theo-

rem 5.1], it follows at once from the structural formula that µ∗(δ([ν
1
2ρ, νx+1ρ])o

δ(ρ, x;σ)) contains exactly two irreducible constituents of the form νx+1ρ⊗π,

which have to be contained in µ∗(L(δ([ν−xρ, ν−
1
2ρ]); δ(ρ, x + 1;σ))) and in

µ∗(σ′ds), where σ′ds is the unique discrete series subquotient of δ([ν
1
2ρ, νx+1ρ])o

δ(ρ, x;σ). Thus, neither µ∗(L(δ([ν−x−1ρ, νxρ]);σ)), nor µ∗(L(δ([ν−x−1ρ, ν−
1
2ρ]);

δ(ρ, x;σ))) contains irreducible constituent of the form νx+1ρ⊗π. This leads
to an embedding

L(δ([ν−x−1ρ, νxρ]);σ) ↪→ ζ([νxρ, νx+1ρ]) o L(δ([ν−xρ, νx−1ρ]);σ)

and, if x ≥ 3
2
, to an embedding

L(δ([ν−x−1ρ, ν−
1
2ρ]); δ(ρ, x;σ)) ↪→

ζ([νxρ, νx+1ρ]) o L(δ([ν−xρ, ν−
1
2ρ]); δ(ρ, x− 1;σ)).

Using Lemma 2.8 and repeating the same arguments, we obtain

̂L(δ([ν−x−1ρ, νxρ]);σ) ↪→

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−
3
2ρ, ν−

1
2ρ]) o ̂

L(ν−
1
2ρ;σ),
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and

̂
L(δ([ν−x−1ρ, ν−

1
2ρ]); δ(ρ, x;σ)) ↪→

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−
5
2ρ, ν−

3
2ρ]) o

̂
L(δ([ν−

3
2ρ, ν−

1
2ρ]); δ(ρ,

1

2
;σ)),

We have already seen that
̂

L(ν−
1
2ρ;σ) ∼= δ(ρ, 1

2
;σ) and that the Aubert dual

of L(δ([ν−
3
2ρ, ν−

1
2ρ]); δ(ρ, 1

2
;σ)) is isomorphic to L(δ([ν−

3
2ρ, ν

1
2ρ]);σ). This

ends the proof.

The remaining cases are covered in the following propositions, a detailed
verification being left to the reader.

Proposition 6.5. If α = 1
2

and b ≤ x, in R(G) we have

ζ([ν−bρ, ν−
1
2ρ]) o ζ(ρ, x;σ) =

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−
3
2ρ, ν−

3
2ρ; τ(ρ;σ))+

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−
1
2ρ, ν−

1
2ρ;σ).

Proposition 6.6. Suppose that ρ0 6∼= ρ. Then the degenerate principal series
ζ([ν−bρ0, ν

− 1
2ρ0]) o ζ(ρ, x;σ) is irreducible if and only if b < β. If b ≥ β, in

R(G) we have

ζ([ν−bρ0, ν
− 1

2ρ0]) o ζ(ρ, x;σ) = L(ν−xρ, . . . , ν−αρ, ν−bρ, . . . , ν−
1
2ρ;σ)+

L(ν−xρ, . . . , ν−αρ, ν−bρ, . . . , ν−β−1ρ; τ (2)).

7 The odd GSpin case

In this section we consider the odd GSpin case.

Remark 7.1. All the propositions in Sections 3 – 6 are valid for the odd
GSpin case with exactly the same statements. More precisely, all the argu-
ments used in [20, 22, 26] (except [26, Theorem 2.1]), as well as those used
in the previous sections, can be directly carried out to the odd GSpin case,
since they completely rely on properties of the Aubert involution which hold
for general reductive groups, the structural formula and classifications of dis-
crete series provided for the odd GSpin groups in [14, 15] (see also Lemma
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2.2 for the structure formula for odd GSpin groups). In the following, we will
comment on the generalizations of the results in [26] to odd GSpin groups
and give the proof for the odd GSpin case of [26, Theorem 2.1].

Let us first recall the definition of odd GSpin groups. Let νm be the
m × m matrix with ones on the second diagonal and zeros elsewhere. Let

J2m =

(
0 νm
−νm 0

)
. Then the similitude symplectic groups are defined as

follows:

GSp(2n, F ) = {g ∈ GL(2n, F ) : tgJ2ng = λ(g)J2n for some λ(g) ∈ F ∗}.

Let T = {t = diag(t1, . . . , tn, at
−1
n , . . . , at−1

1 ) : ti, a ∈ F ∗}, then T is a max-
imal torus for GSp(2n, F ). For t = diag(t1, . . . , tn, at

−1
n , . . . , at−1

1 ) ∈ T , let
e0(t) = a, and let ei(t) = ti for i = 1, . . . , n. Let X = Hom(T, F ∗) be the
character lattice of T . ThenX = Ze0⊕Ze1⊕· · ·⊕Zen. LetX∨ = Hom(F ∗, T )
be the cocharacter lattice of X, and let {e∗0, e∗1, . . . , e∗n} be the basis of X∨

dual to the basis {e0, e1, . . . , en} of X. Then X∨ = Ze∗0⊕Ze∗1⊕· · ·⊕Ze∗n. Let
∆ = {ei−ei+1, i = 1, . . . , n−1, 2en−e0},∆∨ = {e∗i−e∗i+1, i = 1, . . . , n−1, e∗n}.
Then the root datum of GSp(2n) is (X,∆, X∨,∆∨).

Definition 7.2. GSpin(2n + 1, F ) is F -points of the unique split F -group
having root datum (X∨,∆∨, X,∆) which is dual to that of GSp(2n, F ).

Remark 7.3. Let Spin(2n+1, F ) be the double covering of special orthogonal
group SO(2n+ 1, F ). Then by [2, Proposition 2.2], the derived group of the
split GSpin(2n+1, F ) is Spin(2n+1, F ) and GSpin(2n+1, F ) is isomorphic
to

(GL(1, F )× Spin(2n+ 1, F ))/{(1, 1), (−1, c)},
where c = (2en − e0)(−1).

We now briefly summarize the main results in [26]. Let Hn be either
a symplectic group or special odd orthogonal group defined over a non-
archimedean local field F of characteristic different from 2, having split rank
n. In [26], Muić studies the reducibility of δoσ, where σ is a strongly positive
representation in Hn(F ) and δ := δ([ν−l1ρ, νl2ρ]) is an irreducible essentially
square integrable representation of GLm(F ) (Here, ρ is an irreducible unitary
cuspidal representation of GL(F ) and l1, l2 ∈ R is such that l1 + l2 ∈ Z≥0).
Muić, in [26], further describes the composition series of δ o σ if it is re-
ducible. Chapter 3, Chapter 4, and Chapter 5 in [26] describe the cases
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l1 ≤ −1, l1 ≥ 0, and l1 = −1/2 (Proposition 3.1, Theorem 4.1, and Theorem
5.1), respectively. The main ingredients for the proofs of those propositions
and theorems are Tadić’s structure formula for Hn [27] (he mainly uses the
information from GL cuspidal part in the Jacquet modules of the representa-
tions) and the classification of discrete series of Hn [25]. All those ingredients
are now available for odd GSpin groups (Lemma 2.2 and [15]). However, we
note that the proof of [26, Theorem 2.1] can not be applied to the GSpin
groups. We will reprove this theorem below (Theorem 7.5), in the case which
we use when determining the composition factors of the degenerate principal
series. Then, for odd GSpin groups, all the results in Chapters 3, 4, and
5 in [26], together with the correction of [26, Theorem 4.1.(iv), Lemma 4.9]
obtained in [19, Proposition 3.2], follow in the same way as in those two
papers. Therefore, our results on the composition factors of the degenerate
principal series also hold in the odd GSpin case.

Remark 7.4. To prove [26, Theorem 2.1], two lemmas ([26, Lemma 2.1, 2.2]:
description of non-tempered subquotients and tempered but non-square inte-
grable subquotients of generalized principal series) are needed. The main
ingredients in the proofs of those lemmas are again Tadić’s structure formula
(especially the information about GL cuspidal support), Casselman’s square-
integrability criterion, and classification of discrete series representations,
which all can be applied directly to GSpin(2n + 1, F ), so we skip the proofs
of those lemmas for GSpin(2n+ 1, F ).

Recall that α (resp. β) is the reducibility point of ρ (resp. ρ0) and σ,
i.e., νsρ o σ (resp. νsρ0 o σ) is irreducible if and only if s 6∈ {α,−α} (resp.
s 6∈ {β,−β}).

Theorem 7.5. Suppose that σ is an irreducible unitary cuspidal representa-
tion of GSpin(2n+ 1, F ), and that one of the following holds:

(1) ρ0 6∼= ρ, β ≤ −a < b, and b− β ∈ Z,

(2) ρ0
∼= ρ, b > −a > x, and b− α ∈ Z,

(3) ρ0
∼= ρ, α− 1 ≤ −a < b < x, −a ≥ 0, and b− α ∈ Z.

Then in an appropriate Grothendieck group we have

δ([νaρ0, ν
bρ0]) o δ(ρ, x;σ) = L(δ([ν−bρ0, ν

−aρ0]); δ(ρ, x;σ)) + σ
(1)
ds + σ

(2)
ds ,
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where σ
(1)
ds and σ

(2)
ds are mutually non-isomorphic discrete series subrepresen-

tations of δ([νaρ0, ν
bρ0]) o δ(ρ, x;σ).

Proof. We prove only the part (3), other parts can be proved in the same
way, but more easily. It can be seen in the same way as in the proof of [26,
Theorem 2.1] that L(δ([ν−bρ0, ν

−aρ0]); δ(ρ, x;σ)) is the unique non-tempered
irreducible subquotient of δ([νaρ0, ν

bρ0]) o δ(ρ, x;σ). Also, representations

σ
(1)
ds and σ

(2)
ds have been constructed in [15, Theorem 3.14]. Let us prove

that there are no other irreducible tempered subquotients of δ([νaρ0, ν
bρ0])o

δ(ρ, x;σ).
Let π denote an irreducible tempered subquotient of δ([νaρ0, ν

bρ0]) o
δ(ρ, x;σ). From the cuspidal support considerations one can conclude that
π has to be square-integrable and non-strongly positive. Thus, by the clas-
sification given in [15], if α ≥ 2, π can be written as a subrepresentation of
one of the following induced representations:

δ([νaρ, νbρ]) o δ(ρ, x;σ), δ([ν−bρ, νxρ]) o δ(ρ,−a;σ), δ([ν−α+2ρ, ν−aρ]) o σsp,

where σsp stands for the unique irreducible subrepresentation of δ([να−1ρ, νbρ])
oδ(ρ, x;σ). Thus, µ∗(π) contains one of the following irreducible constituents:

δ([νaρ, νbρ])⊗ δ(ρ, x;σ), δ([ν−bρ, νxρ])⊗ δ(ρ,−a;σ), δ([ν−α+2ρ, ν−aρ])⊗ σsp.

If α < 2, π can be written as a subrepresentation of one of the following
induced representations:

δ([νaρ, νbρ]) o δ(ρ, x;σ), δ([ν−bρ, νxρ]) o δ(ρ,−a;σ),

and µ∗(π) contains one of the following irreducible constituents:

δ([νaρ, νbρ])⊗ δ(ρ, x;σ), δ([ν−bρ, νxρ])⊗ δ(ρ,−a;σ).

By [15, Theorem 3.14], only irreducible subrepresentations of δ([νaρ, νbρ])

oδ(ρ, x;σ) are σ
(1)
ds and σ

(2)
ds . Also, it is easy to see, using the odd GSpin ver-

sion of the structural formula given in [14], together with the classification of
strongly positive discrete series, that δ([ν−bρ, νxρ])⊗δ(ρ,−a;σ) appears with
multiplicity one in µ∗(δ([νaρ, νbρ])o δ(ρ, x;σ)), and that δ([ν−α+2ρ, ν−aρ])⊗
σsp also appears with multiplicity one in µ∗(δ([νaρ, νbρ])oδ(ρ, x;σ)) if α ≥ 2.

Let τi, for i ∈ {1, 2}, denote an irreducible tempered subrepresenta-

tion of δ([νaρ, ν−aρ]) o δ(ρ, x;σ) such that σ
(i)
ds is the unique irreducible
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subrepresentation of δ([ν−a+1ρ, νbρ]) o τi. By [29, Section 4], there is a
unique j ∈ {1, 2} such that τj is a subrepresentation of δ([ν−a+1ρ, νxρ]) ×
δ([νaρ, ν−aρ]) o δ(ρ,−a;σ). It follows from the proof of [15, Theorem 3.15]

that σ
(j)
ds is a subrepresentation of δ([ν−bρ, νxρ]) o δ(ρ,−a;σ), so µ∗(σ

(j)
ds )

contains δ([ν−bρ, νxρ])⊗ δ(ρ,−a;σ).
Similarly, if α ≥ 2, then there is a unique k ∈ {1, 2} such that τk is a

subrepresentation of δ([να−1ρ, ν−aρ])×δ([να−1ρ, ν−aρ])×δ([ν−α+2ρ, να−2ρ])o
δ(ρ, x;σ). It follows from the proof of [15, Theorem 3.15] that σ

(k)
ds is a

subrepresentation of δ([ν−α+2ρ, ν−aρ]) o σsp. Frobenius reciprocity implies

that µ∗(σ
(k)
ds ) contains δ([ν−α+2ρ, ν−aρ])⊗ σsp.

From the multiplicities of δ([νaρ, νbρ])⊗δ(ρ, x;σ), δ([ν−bρ, νxρ])⊗δ(ρ,−a;σ),
and δ([ν−α+2ρ, ν−aρ])⊗ σsp in µ∗(δ([νaρ, νbρ])o δ(ρ, x;σ)), we conclude that

π is isomorphic either to σ
(1)
ds or to σ

(2)
ds , and the theorem is proved.
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[17] I. Matić, Strongly positive representations of metaplectic groups, J.
Algebra, 334 (2011), pp. 255–274.

[18] , Jacquet modules of strongly positive representations of the meta-

plectic group S̃p(n), Trans. Amer. Math. Soc., 365 (2013), pp. 2755–
2778.

[19] , On discrete series subrepresentations of the generalized principal
series, Glas. Mat. Ser. III, 51(71) (2016), pp. 125–152.

42



[20] , Aubert duals of strongly positive discrete series and a class of uni-
tarizable representations, Proc. Amer. Math. Soc., 145 (2017), pp. 3561–
3570.

[21] , On Langlands quotients of the generalized principal series isomor-
phic to their Aubert duals, Pacific J. Math., 289 (2017), pp. 395–415.
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